

छत्रपति शाह् जी महाराज विश्वविद्यालय, कानपुर

CHHATRAPATI SHAJU JI MAHARAJ UNIVERSITY, KANPUR

(पाठयक्रम समिति की बैठक की कार्यवाही)

दिनांकः <u>08.05.2021</u> की पूर्वान्हः <u>11:00 AM</u> बजे <u>विज्ञानं</u>

संकाय के गणित विभाग (विषय) हेत् पाठ्यक्रम समिति की बैठक की संस्त्तियां

1. वर्तमान में प्रचलित पाठ्यक्रम में आवश्यकतान् सार संशोधन की संस्तृतियां

(अ) स्नातक पाठ्यक्रमः

BOS members, university representatives & special invitees from different colleges/universities (Ann-I) were present. NEP-2020 U.G. syllabus was discussed in detail, each and every member put up their opinion. The net outcome was that the NEP-2020 U.G. syllabus is good enough, compact and complete in optimized form covering all theoretical & practical aspects of the subject. It was decided that only minor changes are required. Accordingly, basic part of Mathematical statistics is incorporated in one unit of Mathematical Methods paper (SEM.-III, Paper-I,B-part, Unit-VIII) which is within permissible limit. Since Statistics is very useful in so many fields such as data analysis, operation research, forecasting and many other fields, hence Science students should know the basics of it so that they can use it & will help in getting job easily. Vocational/Elective courses such as Economics, Chemistry, Biochemistry, and Physics given in NEP-2020 UG syllabus &many other courses like I.T., CA, Electronics, Physical education, Statistics & Military Studies are already being opted by students in the colleges as per UGC norms.

Regarding online courses/ MOOC Syllabus for Mathematics (vide-websites/Digital Library UP Govt., provided as below is added in the syllabus) - Differential & Partial differential equation, Differentiation & Integration, College Algebra, Matrix, Geometry, Mathematical Modeling, Numerical Analysis & Fourier Series, is already included in NEP 2020 UG Syllabus. Meeting was over at 12.00 noon.

The Convener has been unanimously authorized to submit the syllabus with little change.

*Various websites for online courses -

- 1) www.mooc-list.com>tags>mathe
- 2) https://www.edx.org/courses
- 3) www.ugc.ac.in
- 4) www/snuadmissions.com/bsc/mathematics
- 5) http://heecontent.upsdc.gov.in
- 2. आगामी परीक्षाओं हेतु प्रश्नों (Paper Setter), मूल्यांकन हेतु परीक्षकों एवं प्रायोगिक परीक्षाओं हेतु विषय विशेषज्ञों की अर्हता को ध्यान में रखते हए प्रश्न पत्र वार अर्ह शिक्षकों के नाम एवं पता मोबाइल नंबर के साथ पैनल का अनुमोदन

Minastava

Dr. Meera Srivastava (Convener)

----- Forwarded message ------From: **Rekha Bali** <rbali@hbtu.ac.in>

From: **Rekha Bali** < rbali@hbtu.ac.in > Date: Thu, May 13, 2021, 12:23 PM Subject: Re: Document from Meera Srivastava

To: Meera Srivastava <dr.meerasrivastava05@gmail.com>

Dear Madam,

I have attended the BOS meeting (online) on 8,5,2021 and agreed with the changes as discussed in the meeting.

Regards
Prof. Rekha Bali
Mathematics department ,HBTU,Kanpur

On Wed, May 12, 2021 at 9:25 PM Meera Srivastava < dr.meerasrivastava05@gmail.com > wrote:

----- Forwarded message ------

From: Meera Srivastava <dr.meerasrivastava05@gmail.com>

Date: Wed, May 12, 2021, 8:19 PM Subject: Document from Meera Srivastava To: <dr.meerasrivastava05@gmail.com>

----- Forwarded message ------

From: Pushpendra Tripathi < pushpendratripathi 1503@gmail.com >

Date: Thu, May 13, 2021, 12:24 PM Subject: Syllabus meeting attendance To: <dr.meerasrivastava05@gmail.com>

I was present in BOS Math virtual meeting on 8.5.21 and agreed with change in syllabus.

----- Forwarded message ------

From: Dr C S Prasad Principal D B S College <csprasd@gmail.com>

Date: Thu, May 13, 2021, 9:13 AM Subject: Re: Document from Meera Srivastava

To: Meera Srivastava <dr.meerasrivastava05@gmail.com>

I was present in BOS meeting and agreed with the change.
Dr. C. S. Prasad

----- Forwarded message ------

From: Arvind Kumar Sharma <aksharma.maths@gmail.com>

Date: Thu, May 13, 2021, 10:44 AM

Subject: Re: Document from Meera Srivastava
To: Meera Srivastava <dr.meerasrivastava05@gmail.com>

ANN.-1

Members present in BOS meeting:

BOS Members (Internal & External) -

1) Dr. Meera Srivastava (Convener) D.A-V College, Kanpur

- 2) Dr. Rekha Bali (External) HBTI, Kanpur
- 3) Dr. C.S. Prasad (Member) DBS College, Kanpur
- 4) Dr. P.K. Tripathi (Member) D.A-V College, Kanpur
- 5) Dr. A.K.Sharma (Member) K.K.P.G. College, Etawah

University Representatives -

- 1) Dr. Varsha Gupta
- 2) Dr. Siddarth Mishra (special invitee from CSJMU)

SPECIAL INVITEES -

- 1) Dr. A.L.Pathak (special invitee) BND College, Kanpur
- 2) Dr. S.R.Verma (special invitee) D.A-V College, Kanpur
- 3) DR. Manjari Srivastava (special invitee) VSSD College, Kanpur
- 4) Dr. Maninder Singh Arora (special invitee) PPN College, Kanpur
- 5) Dr. Akhilesh Chandra Yadav (special invitee), Kashi Vidyapeeth , Varanasi

C.S.J.M. University, Kanpur BOS Panel- Mathematics

Subject: Mathematics (30.01.2021)

- 1. Dr. Meera Srivastava, D.A.V. College, Kanpur (Convenor).
- 2. Prof. P. N. Pandey, Allahabad University, Allahabad.
- 3. Prof. Poonam Sharma, Lucknow University, Lucknow.
- 4. Prof. Jaya Upreti, S.S.J. Campus, Almora.
- 5. Dr. S. K. Khandelwal, Kamla Nagar, Agra.
- 6. Dr. P. K. Shukla, K.G.K., Moradabad.
- 7. Dr. Swadesh Singh, B.C., Bareilly.
- 8. Dr. Rekha Bali, H.B.T.U., Kanpur.
- 9. Dr. Chand Shekhar Prasad, D.B.S. College, Govind Nagar, Kanpur.
- 10. Dr. Pushpendra Kumar Tripathi, D.A.V. College, Kanpur.
- 11. Dr. Arvind Kumar Sharma, K.K.P.G. Collge, Etawah.

Syllabus for C.S.J.M. University, Kanpur (NEP-2020) SUBJECT: MATHEMATICS

S	EMESTER	R WISE TI	TLES OF THE PAPER IN UG MAT	HEMATICS COUR	SE
YEAR	SEMESTER	COURS E	PAPER TITLE	THEORY/PRACTICAL	CREDIT
	CE	RTIFICA	TE COURSE IN APPLIED MATHE	MATICS	
FIRST	Ι	B030101T	Differential Calculus & Integral Calculus	THEORY	4
YEAR		B030102P	PRACTICAL	PRACTICAL	2
	II	B030201T	Matrices and Differential Equations & Geometry	THEORY	6
			DIPLOMA IN MATHEMATICS		
SECOND	III	B030301T	Algebra & Mathematical Methods	THEORY	6
YEAR	IV	B030401T	Differential Equation & Mechanic	THEORY	6
			DEGREE IN MATHEMATICS		
THIR	V	B030501T	Group and Ring Theory & Linear Algebra	THEORY	5
D YEAR		B030502T	Any One of The Following (i) Number Theory & Game Theory (ii) Graph Theory & Discrete Mathematics (iii) Differential Geometry & Tensor Analysis	THEORY	5
	VI	B030601T	Metric Space & Complex Analysis	THEORY	4
		B030602T	Numerical Analysis & Operations Research	THEORY	4
		B030603P	PRACTICAL	PRACTICAL	2

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES GENERAL OVERVIEW

							B.A./B.Sc. I			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIOD S (HOURS)	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
			Paper-1	4	4	4x 15= 60	Differential Calculus &	Part A Unit I (9)	Mathematics in 12 th	Engg. and Tech. (UG), Chemistry/Biochemistry/
							Integral Calculus	Unit II (7) Unit III (7)		Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)
		SEMESTER – I					Part A: Differential Calculus	Unit IV (7) Part B		
Z S							Part B: Integral Calculus	Unit V (9) Unit VI (7)		
RSE I	FIRST YEAR							Unit VII (7) Unit VIII (7)		
ERTIFICATE COURSE IN APPLIED MATHEMATICS		32	Paper-II Practical	2	2 Lab Periods(2 Hours Each)	2x2x 15= 60	Practical (Practicals to be done using Mathematica /MATLAB /Maple /Scilab/Maxima etc.)		Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
CERTIFICATE APPLIED MAT	F	ER – II	Paper-1	6	6	6 x 15= 90	Matrices and Differential Equations & Geometry	Part A Unit I (12) Unit II (11) Unit III (11)	Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
		SEMEST					Part A: Matrices and Differential Equations	Unit IV (11) Part B Unit V (12) Unit VI (11)		
							Part B: Geometry	Unit VII (11) Unit VIII (11)		

	B.A./B.Sc. II											
PRO	GRA	ММЕ	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIOD S (HOURS)	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
M		IATICS		YEAR SEMESTER -III	Paper-1	6	6	6 x 15= 90	Algebra & Mathematical Methods Part A: Algebra Part B: Mathematical Methods	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
DIPLOM	AIN	MATHEMATICS	SECOND YEAR	SEMESTER – IV	Paper-1	6	6	6 x 15= 90	Differential Equation & Mechanics Part A: Differential Equation Part B: Mechanics	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Engineering and Technology (UG), Science (Physics-UG)

							B.A./B.Sc. III			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
			Paper-1 Paper-2	5 5	Week 5	5x 15= 75	Group and Ring Theory & Linear Algebra Part A: Group and Ring Theory Part B: Linear Algebra (i) Number Theory & Game Theory Part A: Number Theory Part B: Game Theory	Semester) Part A Unit I (10) Unit III (10) Unit III (9) Unit IV (9) Part B Unit V (10) Unit VII (9) Unit VIII (9) Unit I (10) Unit I (10) Unit II (9) Unit IV (9) Part B Unit IV (9) Unit IV (9) Unit IV (9) Unit IV (9) Part B Unit V (10) Unit VI (10)	Certificate Course in Applied Mathematics Diploma in Mathematic s	Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Engg. and Tech.(UG), BCA, B.Sc.(C.S.)
E	THIRD YERAR	SEMESTER - V					(ii) Graph Theory & Discrete Mathematics Part A: Graph Theory Part B: Discrete Mathematics (iii) Differential Geometry & Tensor Analysis Part A: Differential Geometry Part B: Tensor Analysis	Unit VII (9) Unit VIII (9) Part A Unit I (10) Unit III (9) Unit III (9) Unit IV (9) Part B Unit V (10) Unit VI (10) Unit VII (9) Unit VIII (9) Unit VIII (9) Unit II (10) Unit II (9) Unit II (9) Unit III (9) Unit IV (9)	Diploma in Mathematic s Diploma in Mathematic s	Engg. and Tech. (UG), B.Sc.(C.S.) Engg. and Tech. (UG), B.Sc.(C.S.)
								Part B Unit V (10) Unit VI (10) Unit VII (9) Unit VIII (9)		

					Metric Space	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
	Paper-1	4	4	4 x 15= 60	&	Unit I (8)	Mathematic	
					Complex Analysis	Unit II (8)	s	
						Unit III (7)		
					Part A: Metric Space	Unit IV (7)		
					Part B: Complex Analysis	Part B		
						Unit V (8)		
L						Unit VI (8)		
k – VI						Unit VII (7)		
TER						Unit VIII (7)		
SEMESTER					Numerical Analysis	Part A	Diploma in	Engg. and Tech. (UG), Economics(UG/PG)
SEN	Paper-2	4	4	4x 15= 60	&	Unit I (8)	Mathematic	BBA/BCA, B.Sc.(C.S.)
					Operations Research	Unit II (8)	S	
						Unit III (7)		
					Part A: Numerical Analysis	Unit IV (7)		
						Part B		
					Part B: Operations Research	Unit V (8)		
						Unit VI (8)		
						Unit VII (7)		
						Unit VIII (7)		
	Paper-III	2	2 Lab		Practical		Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
	Practical		Periods(2	2x2x 15 = 60	(Practicals to be done		Mathematic	
			Hours		using Mathematica		S	
			Each)		/MATLAB /Maple /Scilab/Maxima etc.)			

B.A. /B.Sc. I (MATHEMATICS)

Detailed Syllabus For

CERTIFICATE COURSE

IN

APPLIED MATHEMATICS

B.A./B.Sc. I (SEMESTER-I) PAPER-I Differential Calculus & Integral Calculus

D	or Cortificate		Semester: First					
	ne: Certificate	Year: First						
Class: B.A.	./B.Sc.							
			Subject: Mathematics					
Course Co	de: B030101T		Course Title: Differential Calculus & Integral Calculus					
	Credits: 4		Core Compulsory / Elective					
]	Max. Marks: 25	5+75	Min. Passing Marks:					
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0					
			Part- A					
			Differential Calculus					
Unit	Tonics							
			Topics	Lectures				
	Introduction to Indian ancient Mathematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).							
	Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy							
I	sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence,							
	Comparison tes	sts, Cauchy's integral	test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating					
	series, Leibnitz's theorem, absolute and conditional convergence.							
	Limit, continuit	ty and differentiability	of function of single variable, Cauchy's definition, Heine's definition, equivalence of definition					
II	of Cauchy and	Heine, Uniform conti	nuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem,	7				
	extreme value t	heorem, Darboux's into	ermediate value theorem for derivatives, Chain rule, indeterminate forms.					
	Rolle's theorem	n, Lagrange and Cauc	thy Mean value theorems, mean value theorems of higher order, Taylor's theorem with various					
III	forms of remain	inders, Successive dif	ferentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Partial differentiation, Euler's	7				
	theorem on hon	nogeneous function.						
T 7	Tangent and no	rmals, Asymptotes, Cu	urvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple	_				
IV	points, Paramet	ric representation of co	urves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	7				

	Part-B	
	Integral Calculus	
Unit	Topics	No. of Lectures
V	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	9
VI	Improper integrals, their classification and convergence, Comparison test, μ-test, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	7
VII	Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	7
VIII	Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.	7

Suggested Readings (Part- A Differential Calculus):

- 1. R.G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons
- 2. T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc.
- 3. S. Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication.
- 4. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.
- 5. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.
- 6. Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 7. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Integral Calculus):

- 1. T.M. Apostal, Calculus Vol. II, John Wiley Publication
- 2. Shanti Narayan & Dr. P.K. Mittal, Integral Calculus, S.Chand
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment (Introduction to Indian ancient Mathematics and Mathematicians).	5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. I (SEMESTER-I) Paper-II Practical

Programm	e: Certificate	Year: First	Semester: First							
Class: B.A./B.Sc.		rear. First								
			Subject: Mathematics							
Course Co	de: B030102P		Course Title: Practical							
	Credits: 2		Core Compulsory / Elective							
N	Max. Marks: 25	5+75	Min. Passing Marks:							
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4							
Unit			Topics	No. of						
<u> </u>			Topics	Lectures						
			formed in Computer Lab.							
	List of the practicals to be done using Mathematica /MATLAB /Maple /Scilab/Maxima etc. 1. Plotting the graphs of the following functions:									
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(i) ax								
	2.07	eatest integer function								
	(iii) x ²ⁿ ; n		-7							
	(iv) x ²ⁿ⁻¹									
	$(v)\frac{1}{v^{2n-1}};n$									
	$(vi)\frac{1}{v^{2n}};n$									
	6									
	Marie 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	$\frac{\mathbf{b}}{\mathbf{b}}$, $\frac{\mathbf{a}\mathbf{x} + \mathbf{b}}{\mathbf{c}}$, $\mathbf{c} \pm \frac{\mathbf{a}\mathbf{x}}{\mathbf{c}}$								
	$(ix)\frac{ x }{x}$, sin	$\left(\frac{1}{x}\right)$, x sin $\left(\frac{1}{x}\right)$, e ^x , e ⁻	$x \text{ for } x \neq 0.$							
	$(x) e^{ax+b}$, $\log(ax+b)$, $\frac{1}{ax+b}$, $\sin(ax+b)$, $\cos(ax+b)$, $ \sin(ax+b) $, $ \cos(ax+b) $.									
Observe and discuss the effect of changes in the real constants a and b on the graphs.										
	(2) By plotting the graph find the solution of the equation									
			e^{x} , $x = \log_{10}(x)$, $\cos(x) = x$, $\sin(x) = x$, $\cos(y) = \cos(x)$, $\sin(y) = \sin(x)$ etc							
	(3) Plotting	g the graphs of polyno	omial of degree 2,3, 4 and 5, and their first and second derivatives.							
<u> </u>										

- (4) Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc.
- (5) Tracing of conic in Cartesian coordinates.
- (6) Graph of circular and hyperbolic functions.
- (7) Obtaining surface of revolution of curves.
- (8) Complex numbers and their representations, Operations like addition, Multiplication, Division, Modulus. Graphical representation of polar form.
- (9) Find numbers between two real numbers and plotting of finite and infinite subset of R.
- (10) Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations.
- (11) Study the convergence of sequences through plotting.
- (12) Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from theplot.
- (13)Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- (14) Cauchy's root test by plotting *n*-th roots.
- (15) Ratio test by plotting the ratio of n-th and (n + 1)-th term.

Suggested Readings

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. I (SEMESTER-II) PAPER-I Matrices and Differential Equations & Geometry

Programi	ne: Certificate	Year: First	Semester: Second					
Class: B.A	A./B.Sc.							
			Subject: Mathematics					
Course C	ode: B030201T		Course Title: Matrices and Differential Equations & Geometry					
	Credits: 6		Core Compulsory / Elective					
	Max. Marks: 25	5+75	Min. Passing Marks:					
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0					
			PART-A					
			Matrices and Differential Equations					
Unit				No. of				
Unit	Topics							
	Types of Matrices, Elementary operations on Matrices, Rank of a Matrix, Echelon form of a Matrix, Normal form of a Matrix, Inverse							
I	of a Matrix by elementary operations, System of linear homogeneous and non-homogeneous equations, Theorems on consistency of a							
	system of linear equations.							
	Eigen values, E	igen vectors and chara	acteristic equation of a matrix, Caley-Hamilton theorem and its use in finding inverse of a matrix,					
II	Complex function	ons and separation int	to real and imaginary parts, Exponential and Logarithmic functions Inverse trigonometric and	11				
	hyperbolic func	tions.						
	Formation of di	fferential equations, (Geometrical meaning of a differential equation, Equation of first order and first degree, Equation					
III	in which the var	riables are separable,	Homogeneous equations, Exact differential equations and equations reducible to the exact form,	11				
	Linear equation	S.						
	First order high	ner degree equations	solvable for x, y, p, Clairaut's equation and singular solutions, orthogonal trajectories, Linear					
IV	differential equa	ation of order greater	than one with constant coefficients, Cauchy- Eulerform.	11				

PART-B

Geometry

Unit	Topics							
V	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	12						
VI	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension.	11						
VII	Sphere, Cone and Cylinder.	11						
VIII	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree	11						
	equations.							

Suggested Readings (PART-A Matrices and Differential Equations):

- 1. Stephen H. Friedberg, A.J Insel & L.E. Spence, Linear Algebra, Person
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course in Differential Equations, Narosa
- 3. D.A. Murray, Introductory Course in Differential Equations, Orient Longman
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 5. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Geometry):

- 1. Robert J.T Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd.
- 2. P.R. Vittal, Analytical Geometry 2d & 3D, Pearson.
- 3. S.L. Loney, The Elements of Coordinate Geometry, McMillan and Company, London.
- **4.** R.J.T. Bill, Elementary Treatise on Coordinate Geometry of Three Dimensions, McMillan India Ltd., 1994.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **6.** Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A. /B.Sc. II (MATHEMATICS)

Detailed Syllabus For

DIPLOMA IN MATHEMATICS

B.A./B.Sc.II (SEMESTER-III) PAPER-I Algebra & Mathematical Methods

Programn	ne: Diploma		Semester: Third		
Class: B.A	A./B.Sc.	Year: Second			
			Subject: Mathematics		
Course Co	ode: B030301T		Course Title: Algebra & Mathematical Methods		
	Credits: 6		Core Compulsory / Elective		
	Max. Marks: 25	5+75	Min. Passing Marks:		
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0		
			Part- A		
			Algebra		
	1		7115co1 a	N. C	
Unit			Topics	No. of	
	Introduction t	a Indian ancient Math	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).	Lectures	
	inti oduction t	o muian ancient Math	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).		
I	Equivalence re	lations and partitions,	Congruence modulo n, Definition of a group with examples and simple properties, Subgroups,	12	
	Generators of a group, Cyclic groups.				
II	Permutation gr	oups, Even and odd p	ermutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition,	11	
	Lagrange's the	orem and its consequer	nces, Fermat and Euler theorems		
TIT	Normal subgro	ups, Quotient groups, I	Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on	11	
III	isomorphism.			11	
	Rings, Subring	s, Integral domains and	fields, Characteristic of a ring, Ideal and quotient rings, Ring homomorphism, Field of quotient		
IV	of an integral d	omain.		11	

	Part- B	
	Mathematical Methods	
Unit	Topics	No. of Lectures
V	Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians.	4.0
VI	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.	
VII	Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	11
VIII	Mathematical Statistics- Probability, Theoretical distributions (Binomial, Poisson and Normal), Curve fitting, Correlation, Regression.	11

Suggested Readings(Part-A Algebra):

- 1. J.B. Fraleigh, A first course in Abstract Algebra, Addison-weley
- 2. I. N. Herstein, Topics in Algebra, John Wiley & Sons
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **4.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part- B Mathematical Methods):

- 1. T.M. Apostal, Mathematical Analysis, Pearson
- 2. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata -McGrawHill
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **5.** Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment (Introduction to Indian ancient Mathematics and Mathematicians)	5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. II (SEMESTER-IV) PAPER-I Differential Equations & Mechanics

Programm	ne: Diploma	Year: Second	Semester: Fourth			
Class: B.A	A./B.Sc.	1 ear. Second				
			Subject: Mathematics			
Course Co	ode: B030401T		Course Title: Differential Equations & Mechanics			
	Credits: 6		Core Compulsory / Elective			
	Max. Marks: 25	5+75	Min. Passing Marks:			
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0			
			Part- A			
			Differential Equations			
	I			1		
Unit			Topics	No. of		
				Lectures		
т	Second order li	Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of				
I	undetermined c	coefficient, variation of	parameters, Series solutions of differential equations, Power series method.	12		
II	Bessel, Legend	re and Hypergeometric	functions and their properties, recurrence and generating relations.	11		
		-	al equations. Partial differential equations of the first order and degree one, Lagrange's solution,			
III		Partial differential equation of first order and degree greater than one. Charpit's method of solution, Surfaces Orthogonal to the given				
	system of surfa	ces.				
	Origin of seco	nd order PDE, Solution	on of partial differential equations of the second and higher order with constant coefficients,			
IV	Classification of	of linear partial differ	ential equations of second order, Solution of second order partial differential equations with	11		
	variable coeffic	cients, Monge's method	l of solution.			

	Part- B	
	Mechanics	
Unit	Topics	
		Lectures
V	Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and planes.	12
VI	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	11
	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic	
VII	motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and	11
	rough plane curves.	
VIII	Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions,	11
V III	Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	11

Suggested Readings(Part-A Differential Equations):

- 1. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata –McGrawHill
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa
- 3. Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication
- 4. L.E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **6.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings(Part-B Mechanics):

- 1. R.C. Hibbeler, Engineering Mechanics-Statics, Prentics Hall Publishers
- **2.** R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentics Hall Publishers
- 3. A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill
- **4.** J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 6. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (MATHEMATICS)

Detailed Syllabus For

DEGREE IN ATHEMATICS

B.A./B.Sc. III (SEMESTER-V) PAPER-I Group and Ring Theory & Linear Algebra

Programmer Class: B.A.	me: Degree A./B.Sc.	Year: Third	Semester: Fifth	
			Subject: Mathematics	
Course Co	ode: B030501T		Course Title: Group and Ring Theory & Linear Algebra	
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 25	5+75	Min. Passing Marks:	
	,	Total No. of Le	ctures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			PART-A	
			Group and Ring Theory	
Unit			Topics	No. of Lectures
I	Automorphism,	inner automorphism,	hematics and Mathematicians should be included under Continuous Internal Evaluation (CIE). Automorphism groups, Automorphism groups of finite and infinite cyclic groups, Characteristic d its properties; Applications of factor groups to automorphismgroups.	10
II		-	on, <i>p</i> -groups, The Sylow theorems and consequences, Applications of Sylow theorems; Finite Generalized Cayley's theorem, Index theorem, Embedding theorem and applications.	10
III			rings, Division algorithm and consequences, Principal ideal domains, Factorization of ucibility tests, Eisenstein criterion, Unique factorization in $Z[x]$.	9
IV	Divisibility in i	ntegral domains, Irred	ucibles, Primes, Unique factorization domains, Euclidean domains.	9

PART-B

Linear Algebra

Tonics	No. of
Topics	
Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.	10
Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.	9
Linear functionals, Dual space, Characteristic values, Cayley HamiltonTheorem.	9
Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.	9
	Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices. Linear functionals, Dual space, Characteristic values, Cayley HamiltonTheorem. Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for

Suggested Readings:

- 1. Topics in Algebra by I. N. Herstein.
- 2. Linear Algebra by K. Hoffman and R. Kunze.
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 4. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment (Introduction to Indian ancient Mathematics and Mathematicians)	5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (i) Number Theory & Game Theory

Programi	me: Degree	**	Semester: Sixth		
Class: B.A	A./B.Sc.	Year: Third			
			Subject: Mathematics		
Course C	ode: B030502T		Course Title: Number Theory & Game Theory		
	Credits: 5		Core Compulsory / Elective		
	Max. Marks: 25	5+75	Min. Passing Marks:		
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0		
			Part- A		
			Number Theory		
				No. of	
Unit	Topics				
_	Theory of Numbers				
I		-	mes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients plutions of congruences; Chinese remainder theorem; Euler's phi-function.	10	
II	_		; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about ty law; proofs of various formulations; Jacobi symbol.	9	
III	Diophantine E Solutions of ax diophantine eq	$x + by = c, x^n + y^n =$	z^n ; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of	9	
IV	Generating Fu Summation M	ethod. Recurrence Re	nce Relations lating coefficient of generating functions, Partitions, Exponential Generating Functions, A elations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, omogeneous Recurrence Relations, Solutions with Generating Functions.	9	

	Part- B	
	Game Theory	
Unit	Topics	No. of Lectures
V	Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium.	10
VI	Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.	10
VII	Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.	9
VIII	Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.	9

Suggested Readings (Part-A Number Theory):

- 1. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.
- 2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.
- 3. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.
- 4. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.
- **5.** Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **6.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Game Theory):

- 1. Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003
- 2. Vijay Krishna, Game Theory, Academic Press.
- 3. Prajit Dutta, Strategies and Games, MIT Press, (Website 1) http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html
- 5. Allan MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006
- 6. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 7. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Graph Theory & Discrete Mathematics

Programi	me: Degree	X 7 (D). • 1	Semester: Sixth	
Class: B.A	A./B.Sc.	Year: Third		
			Subject: Mathematics	
Course Co	ode: B030502T		Course Title: Graph Theory & Discrete Mathematics	
		I		
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 2		Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A	
			Graph Theory	
				T
				No. of
Unit	Topics			Lectures
	Introduction to	oranhs hasic properti	es of graphs, Simple graph, multi graph, graph terminology, representation of graphs, Bipartite,	Decidies
I		•	connected components in a graph, Euler graphs, Directed, Undirected, multi-graph, mixed graph.	10
II		-	cursal graph, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism ence relation and degree of the graph.	9
	and nomomorp	mism of graphs, meta-	ence relation and degree of the graph.	
***				0
	1 -	-	circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, et path, Dijkstra's algorithm.	9
	Travelling sale	sman problem, shortes	e paul, Dijkstra s argoritimi.	_
IV	Tree, Binary ar	nd Spanning trees, Col	oring, Color problems, Vertex coloring and important properties.	9

	Part- B	
	Discrete Mathematics	
Unit	Topics	No. of Lectures
V	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truthtable. Relation- Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation.	10
VI	Boolean Algebra- Basic definitions, Sum of products and products of sums, Logic gates and Karnaugh maps. Graphs- Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, regular, planar and connected graphs, connected components in a graph, Euler graphs, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism and homomorphism of graphs.	10
VII	Combinatories- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	9
VIII	Finite Automata- Basic concepts of automation theory, Deterninistic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	9

Suggested Readings (Part-A Graph Theory):

- 1. "Graph Theory with Applications to Engineering and Computer Science" by Narsingh Deo
- 2. "Introduction to Graph Theory" by Douglas B West
- 3. "Graph Theory with Algorithms and Its Applications: In Applied Science and Technology" by Santanu Saha Ray
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- **5.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Discrete Mathematics):

- 1. Discrete Mathematics by C. L.Liu.
- 2. Discrete Mathematics with computer application by Trembley and Manohar.
- 3. Discrete Mathematics and Its Applications by Kenneth H. Rosen
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25				
SN	Assessment Type	Max. Marks			
1	Class Tests	10			
2	Online Quizzes/ Objective Tests	5			
3	Presentation	5			
4	Assignment	5			

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Differential Geometry & Tensor Analysis

Programme: Degree		V Thind	Semester: Sixth	
Class: B.A	A./B.Sc.	Year: Third		
		L	Subject: Mathematics	
Course Co	ode: B030502T		Course Title: Differential Geometry & Tensor Analysis	
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A	
			Differential Geometry	
				No. of
Unit			Topics	Lectures
				Lectures
I	rectifying plane	e, Osculating circle, or	Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and sculating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent eyes, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	10
	,			
II			e patches on surface curve of a surface, family of surfaces (one parameter), edge of regression, developable surfaces, surfaces of revolution, Helicoids.	9
Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, geodesic equations, normal properties of geodesics, geodesics curvature, Geodesic polars.			9	
IV	TT7		curves on surfaces, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, nes of curvature, Rodrigue's formula, Euler'stheorem.	9

	rait- D	
	Tensor Analysis	
Unit	Topics	No. of Lectures
V	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors-symmetric tensor, inner product, associated tensor with examples.	10
VI	Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols, Covariant differentiation, non-commutativity of Covariant derivative.	10
VII	Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, with examples.	9
VIII	Riemannian space, Riemannian curvatures and their properties, geodesics, geodesic curvature, geometrical interpretation of curvature tensor, Ricci tensor, scalar curvature, Einstein space and Einstein tensor.	9

Part- R

Suggested Readings (Part-A Differential Geometry):

- 1. T.J. Willmore, An Introduction to Differential Geometry, Dover Publications, 2012.
- 2. B. O'Neill, Elementary Differential Geometry, 2nd Ed., Academic Press, 2006.
- 3. C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003.
- 4. D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.
- 5. S. Lang, Fundamentals of Differential Geometry, Springer, 1999.
- 6. B. Spain, Tensor Calculus: A Concise Course, Dover Publications, 2003.
- 7. An Introduction to Differential Geometry (with the use of tensor Calculus), L. P. Eisenhart, Princeton University Press, 1940.
- 8. Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd Edition, I. S. Sokolnikoff, John Wiley and Sons., 1964.
- 9. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 10. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Tensor Analysis):

- 1. Tensors- Mathematics of Differential Geometry by Z. Ahsan, PHI,2015
- 2. David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.
- 3. R. S, Mishra, A Course in Tensors with Applications to Reimannian Geometry, Pothishala Pvt. Ltd, Allahabad.
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-I METRIC SPACES & COMPLEX ANALYSIS

Programme: Degree Class: B.A./B.Sc.		V Th:	Semester: Sixth	
		Year: Third		
			Subject: Mathematics	
Course Co	de: B030601T		Course Title: METRIC SPACES & COMPLEX ANALYSIS	
	Credits: 4		Core Compulsory / Elective	
Ι	Max. Marks: 25	5+75	Min. Passing Marks:	
		Total No. of	Leatures Tutorials Practical (in hours non week). I T D: 4.0.0	
		Total No. of	Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0	
			Part- A	
			Motrio Space	
			Metric Spaces	
Unit			Topics	No. of
				Lectures
	Basic Concept			
Ι	Metric spaces:	Definition and example	es, Sequences in metric spaces, Cauchy sequences, Complete metric space.	8
	Tomology of M	Intrin Crange		
II	Topology of M	-	Open set, Interior of a set, limit point of a set, derived set, closed set, closure of a set, diameter of	Q
		theorem, Subspaces, D		O
		Uniform Continuity i		
Ш		-	erion and other characterizations of continuity, Uniform continuity, Homeomorphism,	7
		pping, Banach fixed p		,
		s and Compactness		
		_	, Connectedness and continuous mappings, Compactness, Compactness and boundedness,	
\mathbf{IV}		ections on compact spa		7

	Part- B	
	Complex Analysis	
Unit	Topics	No. of Lectures
V	Analytic Functions and Cauchy-Riemann Equations Functions of complex variable, Mappings; Mappings by the exponential function, Limits, Theorems on limits, Limits involving the point at infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient conditions for differentiability; Analytic functions and their examples.	0
VI	Elementary Functions and Integrals Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function, Derivatives of functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.	8
VII	Cauchy's Theorems and Fundamental Theorem of Algebra Antiderivatives, Proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; An extension of Cauchy integral formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.	7
VIII	Series and Residues Convergence of sequences and series, Taylor series and its examples; Laurent series and its examples, Absolute and uniform convergence of power series, Uniqueness of series representations of power series, Isolated singular points, Residues, Cauchy's residue theorem, residue at infinity; Types of isolated singular points, Residues at poles and itsexamples.	1 7

Suggested Readings (Part-A Metric Space):

- 1. Mathematical Analysis by Shanti Narain.
- 2. Shirali, Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print.
- 3. Kumaresan, S. (2014). Topology of Metric Spaces (2nd ed.). Narosa Publishing House. New Delhi.
- 4. Simmons, G. F. (2004). Introduction to Topology and Modern Analysis. Tata McGraw Hill. New Delhi.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 6. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Complex Analysis):

- 1. Function of Complex Variable by Shanti Narain.
- 2. Complex variable and applications by Brown & Churchill.
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCS, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 4. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Numerical Analysis & Operation Research

Programn	ne: Degree	X 7	Semester: Sixth	
Class: B.A./B.Sc.		Year: Third		
			Subject: Mathematics	
Course Co	ode: B030602T		Course Title: Numerical Analysis & Operations Research	
	Credits: 4		Core Compulsory / Elective	
	Max. Marks: 2		Min. Passing Marks:	
	IVIAA. IVIAIRS. 2.		of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0	
		100011(00	PART-A	
			I ANI-A	
			Numerical Analysis	
Unit			Tonica	No. of
Cint			Topics	Lectures
I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.			8
II	Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen value problem: Jacobi's method, Givens method, Power method.			
III		method, Types of app	rential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: proximation: Last Square polynomial approximation, Uniform approximation, Chebyshev	7
IV Difference Equat			ons, Shooting method and Difference equation method for solving Linear second order differential first, second and third type.	7

PART-B

Operations Research

Unit	Topics					
V	Introduction, Linear programming problems, statement and formation of general linear programming problems, graphical method, slack and surplus variables, standard and matrix forms of linear programming problem, basic feasible solution.					
VI	Convex sets, fundamental theorem of linear programming, basic solution, Simplex method, introduction to artificial variables, two phase method Big-M method and their comparison.	8				
VII	Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method, sensitivity analysis.	7				
VIII	Transportation problems, assignment problems.	7				

Suggested Readings(Part-A Numerical Analysis):

- 1. Numerical Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain.
- 2. Introductory methods of Numerical Analysis by S. S. Sastry
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 4. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings(Part-B Operation Research):

- 1. Taha, Hamdy H, "Opearations Research- An Introduction", Pearson Education.
- 2. Kanti Swarup, P. K. Gupta, Man Mohan Operations research, Sultan Chand & Sons
- 3. Hillier Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication.
- **4.** Winston Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4th Edition.
- 5. Hira D.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd.
- **6.** Kalavathy S., "Operations Research", S Chand.
- 7. Suggested digital plateform: NPTEL/SWAYAM/MOOCs, www.mooc-list.com/tags/mathe, http://heecontent.upsdc.gov.in/
- 8. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-III Practical

Programme: Degree Class: B.A./B.Sc. Year:		Year: Thir	·d	Semester: Sixth	
				Subject: Mathematics	
Course C	ode: B030603P			Course Title: Practical	
	Credits: 2			Core Compulsory / Elective	
	Max. Marks: 25			Min. Passing Marks:	
		Tota	ıl No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
Unit				Topics	No. of
5 222				F	Lectures
	List of the pract	_		ed in Computer Lab. computer algebra software (CAS), for example Mathematica/MATLAB/Maple/ Maxima/Scilab	
	etc 1. Solution of tr	ranscendental and	d algel	braic equations by	
	i) Bisection me	thod			
	ii) Newton Rap	hson method (Si	mple 1	root, multiple roots, complex roots).	
	iii) Secant meth	nod.			
	iv) Regula Fals	i method.			
	2. Solution of s	ystem of linear e	quatio	ns	
	i) LU decompos	sition method			
	ii) Gaussian eli	mination method	i		
	iii) Gauss-Jacol	bi method			
	iv) Gauss-Seide	el method			
	3. Interpolation				
	i) Lagrange Inte	erpolation			
	ii) Newton's fo	rward, backward	l and d	livided difference interpolations	
	4. Numerical In	itegration			
	i) Trapezoidal I	Rule			
	ii) Simpson's o	ne third rule			
	iii) Weddle's R	ule			
	iv) Gauss Quad	lrature			
	5. Method of fi	nding Eigenvalu	e by P	ower method (up to 4×4)	
	6. Fitting a Poly	ynomial Function	n (up t	o third degree)	

- 7. Solution of ordinary differential equations
- i) Euler method
- ii) Modified Euler method
- iii) Runge Kutta method (order 4)
- (iv) The method of successive approximations (Picard)

Suggested Readings:

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics

Suggested equivalent online courses: https://www.edx.org, https://www.coursera.org/courses, https://www.ugc.ac.in/, www.snuadmissions.com/bsc/mathematics.

Further Suggestions: